ru
Клауди Альсина

Мир математики. Том 11. Карты метро и нейронные сети. Теория графов

Kitap eklendiğinde bana bildir
Bu kitabı okumak için Bookmate’e EPUB ya da FB2 dosyası yükleyin. Bir kitabı nasıl yüklerim?
Наш мир полон не только букв и цифр, но и самых разных изображений. Это картины, фотографии, произведения искусства, многочисленные схемы… Вспомните схему вашей линии метро или автобусного маршрута — это всего лишь линия с точками, рядом с которыми подписаны названия остановок. Подобные схемы из точек и линий называются графами. Именно о них вы узнаете, прочитав эту книгу.
Bu kitap şu anda mevcut değil
260 yazdırılmış sayfalar
Bunu zaten okudunuz mu? Bunun hakkında ne düşünüyorsunuz?
👍👎

İzlenimler

  • Anna Dbir izlenim paylaşıldı6 yıl önce
    👍Okumaya değer
    💡Çok Şey Öğrendim
    🎯Değer

    Было интересно прочесть. Книга быстро освежила базовые познания в области теории графов. Однако хотелось бы больше теории, доказательств теорем и практических задач вместо рассказов о том, как применяются графы в повседневной жизни.

Alıntılar

  • Ариана Пехalıntı yaptı2 yıl önce
    Хорошо да коротко — вдвойне хорошо.

    Народная мудрость
  • Anna Dalıntı yaptı6 yıl önce
    Можно ли найти такой путь в связном графе, который бы проходил через все вершины графа только один раз, причем начальная и конечная вершины при этом совпадали? Такие пути называют гамильтоновыми циклами.
  • Anna Dalıntı yaptı6 yıl önce
    Подсчитать число ребер полного графа Кn очень просто: каждая вершина должна соединяться с n — 1 вершиной, число вершин равно n, следовательно, значение выражения n(n — 1) будет равно удвоенному числу ребер (так как каждое ребро соединяет две вершины). Поэтому общее число ребер будет равно n(n — 1)/2 — биномиальному коэффициенту , равному числу всех возможных пар на множестве из n элементов. Зависимость между числом ребер и n является квадратичной, следовательно, число ребер Кn будет возрастать очень быстро.

Kitap raflarında

fb2epub
Dosyalarınızı sürükleyin ve bırakın (bir kerede en fazla 5 tane)